4. Поляризационные свойства ионов, катионов, анионов
Помимо величины заряда и радиуса важной характеристикой иона являются его поляризационные свойства. Рассмотрим этот вопрос несколько подробнее. У неполярных частиц (атомов, ионов, молекул) центры тяжести положительных и отрицательных зарядов совпадают. В электрическом поле происходит смещение электронных оболочек в направлении положительно заряженной пластины, а ядер — в направлении отрицательно заряженной пластины. Вследствие деформации частицы в ней возникает диполь, она становится полярной.
Источником электрического поля в соединениях с ионным типом связи являются сами ионы. Поэтому, говоря о поляризационных свойствах иона, необходимо различать поляризующее действие данного иона и способность его самого поляризоваться в электрическом поле.
Поляризующее действие иона будет тем большим, чем больше его силовое поле, т. е. чем больше заряд и меньше радиус иона. Поэтому в пределах подгрупп в Периодической системе элементов поляризующее действие ионов понижается сверху вниз, так как в подгруппах при постоянной величине заряда иона сверху вниз увеличивается его радиус.
Поэтому поляризующее действие ионов щелочных металлов например растет от цезия к литию, а в ряду галогенид-ионов — от I к F. В периодах поляризующее действие ионов растет слева направо вместе с увеличением заряда иона и уменьшением его радиуса.
Поляризуемость иона, способность его к деформации растут с уменьшением силового поля, т. е. с уменьшением величины заряда и увеличением радиуса. Поляризуемость анионов обычно выше, чем катионов и в ряду галогенидов растет от F к I.
На поляризационные свойства катионов оказывает влияние характер их внешней электронной оболочки. Поляризационные свойства катионов как в активном, так и в пассивном смысле при одинаковом заряде и близком радиусе растут при переходе от катионов с заполненной оболочкой к катионам с незаконченной внешней оболочкой и далее к катионам с 18-электронной оболочкой.
Например, в ряду катионов Mg2+, Ni2+, Zn2+ поляризационные свойства усиливаются. Эта закономерность согласуется с изменением в приведенном в ряду радиуса иона и строения его электронной оболочки:
Катион |
Мg 2+ |
Ni 2+ |
Zn 2+ |
Радиус, нм |
0,078 |
0,079 |
0,083 |
Электронная оболочка |
2s22р6 |
3s23р63d8 |
3s23р63d10 |
Для анионов поляризационные свойства ухудшаются в такой последовательности:
I—, Br—, Cl—, CN—, OH—, NO3—, F—, ClO4—.
Результатом поляризационного взаимодействия ионов является деформация их электронных оболочек и, как следствие этого, сокращение межионных расстояний и неполное разделение отрицательного и положительного зарядов между ионами.
Например в кристалле хлорида натрия величина заряда на ионе натрия составляет +0,9, а на ионе хлора — 0,9 вместо ожидаемой единицы. В молекуле KCl, находящейся в парообразном состоянии, величина зарядов на ионах калия и хлора составляет 0,83 единицы заряда, а в молекуле хлороводорода — лишь 0,17 единицы заряда.
Поляризация ионов оказывает заметное влияние на свойства соединений с ионной связью, понижая их температуры плавления и кипения, уменьшая электролитическую диссоциацию в растворах и расплавах и др.
Ионные соединения образуются при взаимодействии элементов, значительно различающихся по химическим свойствам. Чем больше удалены друг от друга элементы в периодической системе, тем в большей степени проявляется в их соединениях ионная связь. Напротив, в молекулах, образованных одинаковыми атомами или атомами элементов, близких по химическим свойствам, возникают другие типы связи. Поэтому теория ионной связи имеет ограниченное применение.